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Auctions are an important theoretical and practical tool in economics, and well studied in 
the literature. Their procurement siblings, reverse auctions, have received less attention, 
and are sometimes tacitly assumed to be exact counterparts. We show that for correlated 
bidders, reverse auctions behave differently from auctions. For two bidders we discuss a 
simplification of the problem of finding the optimal reverse auction. For k ≥ 3 bidders, 
we show that the optimal reverse auction must sometimes buy k copies of the item (and 
discard all but one of them).

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Within mechanism design, auctions are a major field 
of interest [1–3]. In this, we consider a single auctioneer 
who wants to sell an item to one of several bidders, each 
of whom has a private valuation for the item which the 
auctioneer does not know. The challenge is to allocate the 
item according to some measure of optimality based on 
the private valuations. In addition to social welfare optimi-
sation, in which we aim to allocate the item to the bidder 
who values it most, revenue maximisation (where we aim 
to maximise the auctioneer’s expected profit) has received 
major attention. Myerson’s seminal result [4] showed that 
with independent priors, (revenue-) optimal single-item 
auctions have a closed-form solution. For correlated priors, 
in contrast to the aforementioned independent-priors set-
ting, this is an intricate computational problem. The case 
with three or more bidders has been shown to be in-
tractable by Papadimitriou and Pierrakos [5]. On the other 
hand both [5] as well as Dobzinski et al. [6] show that 
the optimal auction for two bidders can be computed in 
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polynomial time. Both approaches reduce the problem to 
problems known to be solvable in polynomial time.

In addition to selling an item, auctions may also be 
used by the auctioneer to buy an item or service from one 
of multiple sellers. These “reverse” or “procurement” auc-
tions are widely used for instance to solicit bids for public 
projects. Many results from auctions carry over directly to 
the reverse auction case. For instance, the VCG mechanism 
for optimising social welfare works in a reverse auction, as 
do many other auction formats. So much do these cases 
appear to be mirror images of one another, that simple 
reverse counterparts of single-item auctions are rarely dis-
cussed explicitly in the literature. Most of the published 
results on reverse auctions investigate more complex sce-
narios such as differing quality or service levels from dif-
ferent sellers. To our knowledge, a significant distinction 
between an auction and its direct reverse counterpart has 
not been discussed in the literature before.

Our main interest is in exploring the structural proper-
ties of correlated reverse auctions. We show that these be-
have differently than auctions, for any number of bidders. 
Our results raise interesting questions about the complex-
ity of reverse auctions.

The results in this paper have previously been pre-
sented at AAMAS 2018 as part of a larger text concern-
ing the complexity of computing an optimal auction [7]. 
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We restate them here with improved presentation, and fo-
cussing specifically on the asymmetry between the auction 
and reverse auction setting.

1.1. Previous work

Most of the literature on reverse or procurement auc-
tions specifically seem to focus on more complex settings 
than the ones we are interested in. One major area of re-
search is when sellers offer goods of differing qualities, 
see for instance Manelli and Vincent [8]. Chapter 13.5 by 
Hartline and Karlin [9] in Nisan et al. [10] discusses fea-
sibility constraints in reverse auctions. Several chapters in 
the same book briefly mention that they consider reverse 
auctions to be covered by the model they use or similar, 
e.g. pages 220, 269, 332 therein [10].

To the best of our knowledge, almost no literature looks 
specifically at the simple reverse auction setting we are in-
terested in. The main exception to this we are aware of 
is a paper by Minooei and Swamy [11,12], who discuss 
the more general setting of mechanism design for covering 
(as opposed to packing) problems. Conitzer and Sandholm 
[13] discuss collusion in combinatorial auctions and re-
verse auctions. They take the reverse setting to be a simple 
parallel of the forward case (as we do here), except for an 
explicit constraint on allowed allocations (in their case, for 
the VCG mechanism) which we also assume in this pa-
per. They consider, among other results, the complexity of 
computing whether collusion is possible in a (forward or 
reverse) auction, showing that this is NP-hard even for 2 
colluders.

Most relevant to our discussion is the literature on the 
complexity of optimal correlated auctions. Papadimitriou 
and Pierrakos [5] show that for two bidders, a (revenue-) 
optimal auction can be found in polynomial time. Their 
algorithm reduces the problem to finding a maximum-
weight independent set on a bipartite graph, with edges 
encoding allocation constraints of the auction. This yields 
an algorithm that runs in time O(n6) for prior support 
size n2 (each bidder’s valuation taking one of n discrete 
values). For three or more bidders they show that it is 
NP-hard to approximate the optimal auction to within a 
factor of 1.0005. Dobzinski et al. [6] also give a polynomial 
algorithm for the two-bidder auction. They show that a 
truthful-in-expectation mechanism found via an LP can be 
derandomised. Furthermore they show that a polynomial-
time algorithm for two bidders extends to a polynomial-
time approximation algorithm for many bidders through 
a “2-lookahead” auction. This builds on previous work by 
Ronen [14] and Ronen and Saberi [15]. In all these, as well 
as this paper, the focus is mainly on deterministic mecha-
nisms, as [6] shows that the randomised case is easy.

2. Preliminaries

We begin by considering the familiar single-item auc-
tion, in which an auctioneer wishes to sell one item to one 
of several bidders, numbered 1, . . . , k. We assume each bid-
der i has valuation vi , which can take one of several dis-
crete values. For ease of notation we take vi ∈ {1, . . . ,n} =
[n]. It is easily checked that none of our results depend on 
this. Let F denote the (joint) prior probability distribution 
over v = (v1, . . . , vk). Our interest is only in determinis-
tic mechanisms, which consist of allocation functions xi(v)

together with payment functions pi(v) for each bidder. Let 
xi(v) = 1 if bidder i wins the item given bid vector v, and 
xi(v) = 0 otherwise.

Given that we assume the auctioneer only has a single 
copy of the item to sell, we require 

∑
i xi(v) ≤ 1 for all 

v. We assume quasilinear utilities, and require the usual 
notions of dominant strategy incentive compatibility (DSIC) 
and individual rationality (IR), as defined formally below.

(Utilities) ui(v) = vixi(v) − pi(v) (1a)

(DSIC) vi xi(v) − pi(v) ≥ vixi(v ′
i,v−i) − pi(v ′

i,v−i)

∀i,v, v ′
i (1b)

(IR) ui(v) ≥ 0 ∀i,v (1c)

(1-item)
∑

i

xi(v) ≤ 1 ∀v (1d)

We therefore can assume that players’ bids are equal to 
their valuations. The auctioneer’s aim will be to maximise 
their expected revenue E [pi(v)]. Formally, we may now 
define the optimal auction design problem as follows.

Definition 1. The optimal auction design problem takes as 
input a prior distribution F as defined above, given explic-
itly as a list of nk values. The desired output is a pair of 
allocation and payment functions x() and p() that satisfy 
conditions (1a)-(1d) above, and which maximise the ex-
pected revenue E [pi(v)]. These may be output explicitly 
as a list of their knk values.

By Myerson [4], truthfulness in this domain for de-
terministic mechanisms is equivalent to monotone allo-
cations, and the corresponding uniquely determined pay-
ments - the winner’s critical bid. That is, if bidder i wins 
the auction given bid profile v, then they also win the auc-
tion for bid profile (v ′

i, v−i), for any v ′
i > vi . Their payment 

will be the smallest v ′
i ≤ vi such that they would still win 

the auction given bid profile (v ′
i, v−i). If bidder i does not 

win they pay nothing (by IR (1c)).

xi(v) = 1 ⇒ ∀v ′
i ≥ vi : xi(v ′

i,v−i) = 1 (2a)

pi(v) = min
{

v ′
i : xi(v ′

i,v−i) = 1
}

if xi(v) = 1, else pi(v) = 0 (2b)

Papadimitriou and Pierrakos [5] give a very elegant geo-
metric representation of this condition: For each bidder i, 
their critical bid is given by a function αi(v−i) of the other 
bidders’ bids, where xi(v) = 1 iff vi ≥ αi(v−i). Consider 
now for each bidder i the region Ai = {v : vi ≥ αi(v−i)}
of all bid vectors for which i wins the item. Clearly this 
is bordered by αi(v−i). Furthermore, if (vi, v−i) ∈ Ai , then 
also (v ′

i, v−i) ∈ Ai for all v ′
i ≥ vi . This follows both from 

the definition of Ai as the region bounded below by the 
graph of a function of v−i , as well as directly from mono-
tonicity. We will also say that Ai is “upward-closed in 
direction vi ” for this. The 1-item constraint (1d) entails 
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Fig. 1. A mechanism as a partition of the bid space into regions of allocation, and the corresponding critical bid functions. Discrete prior support shown 
dotted, with critical bid functions and allocation regions drawn slightly larger for easier readability. (We are being slightly imprecise here: The graph of α1

is the vertical part of the dashed blue line; The graph of α2 is the horizontal part of the dashed red line.) (For interpretation of the colours in the figure(s), 
the reader is referred to the web version of this article.)
that any two Ai must be disjoint. In summary, the picture 
we get is that looking for the optimal k-bidder auction is 
looking for a partition of the space of possible bid com-
binations into k + 1 regions: k regions where the item 
is sold to each of the buyers (each upward-closed in the 
corresponding direction), and one where the item is not 
sold. Fig. 1 shows this picture for the two-bidder case. Tak-
ing bidder 1’s bid to be on the x-axis and bidder 2’s on 
the y-axis, we are looking for A1 to be rightward-closed, 
and A2 to be upward-closed. There is a two-fold trade-
off: smaller αi(v−i) means higher probability of drawing 
vi ≥ αi(v−i), but selling at a lower price if so. Smaller 
αi(v−i) also means “blocking” more bid vectors for the 
other bidder. We will often identify a mechanism through 
either the regions Ai or the functions αi . When defining 
a mechanism this way, DSIC and IR are automatic. The 
1-item constraint (1d) for two bidders can be restated as a 
non-crossing property [5]. Equivalently it may be stated as 
the disjointness requirement that no two Ai may overlap.

In the reverse auction setting we are interested in, 
again a single auctioneer faces k bidders having their valu-
ations drawn from a joint distribution F supported on [n]k . 
We assume that each bidder holds one copy of a single 
type of item, each bidder’s copy identical to all others’, and 
that the auctioneer wishes to procure one copy. For sim-
plicity we now write xi(v) = −1 if the mechanism buys a 
copy of the item from bidder i. This allows us to leave the 
definitions of utilities, DSIC and IR in equations (1a)-(1c)
unchanged.2 It is easy to see that in this context it makes 
little sense to require that the mechanism buys at most one 
copy of the item. Instead we require the mechanism to al-
ways buy at least one copy of the item, i.e. we require that 

2 Taking instead vi to be nonpositive, or adjusting equations (1a)-(1c)
is equivalent.
∑
i xi(v) ≤ −1, replacing the corresponding constraint (1d). 

Formally, we may define the optimal reverse auction de-
sign problem as follows.

Definition 2. The optimal reverse auction design problem 
takes as input a prior distribution F as defined above, 
given explicitly as a list of nk values. The desired output 
is a pair of allocation and payment functions x() and p()

that satisfy conditions (3a)-(3d), and which minimise the 
expected revenue E [pi(v)]. These may be output explic-
itly as a list of their knk values.

(Utilities) ui(v) = vi xi(v) − pi(v) (3a)

(DSIC) vi xi(v) − pi(v) ≥ vixi(v ′
i,v−i) − pi(v ′

i,v−i)

∀i,v, v ′
i (3b)

(IR) ui(v) ≥ 0 ∀i,v (3c)

(1-item)
∑

i

xi(v) ≤ −1 ∀v (3d)

Geometrically, we get a very similar picture of regions 
Ai in which the mechanism buys from bidder i. However, 
they now need to be downward-closed in direction of vi . 
In the two-bidder case, A1 ought to be leftward-closed, 
and A2 downward-closed. Secondly, two or more of the Ai
may now overlap (when the mechanism buys two or more 
copies). The constraint that 

∑
i xi(v) ≤ −1 means that the 

union of all Ai must cover all of the bid space.

3. Our results

Recall that we are looking for regions Ai which are 
downward-closed in direction vi , may overlap, and must 
cover all of the bid space. In an auction, a large part of 
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Fig. 2. From left to right: (a) In the first case of Theorem 1, if there is no point to the right of x in which we buy only from seller 1, we can improve our 
cost by not buying from seller 1 in the shaded region, i.e. moving the blue line so it coincides with the red one. (b) Buying from either seller is blocked 
at x′ due to truthfulness, in the second case of Theorem 1. By assumption we do not buy from seller 1 at x(2) , and thus by truthfulness cannot buy from 
seller 1 at x′ . Vice versa we assume we do not buy from seller 2 at x(1) , and so cannot buy from them at x′ either. That leaves us with noone to buy the 
item from at x′ , violating our feasibility constraint.
the auctioneer’s power comes from the option of not sell-
ing the item. Indeed, reserve prices below which the item 
is not sold are at the heart of Myerson’s seminal result 
[4]. For a single bidder, not selling is even all the power 
the auctioneer has to achieve any revenue. In a reverse 
auction, the counterpart of this is to buy multiple copies 
of the item from multiple sellers. In a way, both of these 
cases are suboptimal locally, but allow for higher expected 
revenue globally: If for a given bid vector v the auction-
eer does not sell in the auction this clearly foregoes some 
potential contribution to expected revenue arising from 
selling at v. But, it may allow the auctioneer to gener-
ate a higher contribution to expected revenue (through 
higher prices) at some other bid vectors. Similarly in the 
reverse auction, buying from multiple bidders at a bid vec-
tor v clearly incurs a double or multiple contribution to 
expected cost arising from v. But, it may allow the auc-
tioneer to achieve a lower expected cost elsewhere in the 
bid space as a result.

It is easy to see that the possibility of buying from 
multiple bidders generates a much richer space of poten-
tial outcomes than in the auction. Whereas in the auction 
there is k + 1 possible allocations for each bid vector (sell-
ing to each of the bidders, plus selling to none of them), 
in the reverse auction we potentially have to deal with 
2k − 1 possible allocation (buying from any combination 
of bidders, except from none of them). The question we 
deal with in this section is whether all of these are actu-
ally relevant to the problem of finding the optimal reverse 
auction. That is, will all of these occur in an optimal mech-
anism? The answer is surprising: “Yes”, for k ≥ 3 bidders, 
but “No” for 2 bidders. So, in the former case, the re-
verse auction is clearly structurally different than the cor-
responding auction. The latter is surprising in itself, as a 
priori both the 2-bidder auction as well as the 2-bidder 
reverse auction potentially have three valid allocations. As 
it turns out, not even these two cases are structurally the 
same.

Theorem 1. In the single-item reverse auction with two corre-
lated sellers, the optimal mechanism will never buy from both 
bidders.
Proof. Suppose for bid vector x we buy from both sellers. 
We consider two cases. Firstly, suppose that for one bid-
der, wlog for bidder 1, there exists no point x′ = (x′

1, x2)

with x′
1 > x1 we buy only from seller 1. Then we could 

strictly improve our cost if we did not buy from 1 at x and 
all those bid vectors x′ = (x′

1, x2) with x′
1 > x1. Thus the 

mechanism was not optimal. See Fig. 2 (a) for an illustra-
tion. And similarly, if there were no bid vector x′ = (x1, x′

2)

with x′
2 > x2 where we bought only from seller 2, the 

mechanism was not optimal.
So assume that for both sellers there exists such a bid 

vector as above. That is, for bidder 1, there exists a bid vec-
tor x(1) = (x′

1,x2), with x′
1 > x1, so that we buy only from 

seller 1 at x(1) . And for bidder 2, there exists a bid vec-
tor x(2) = (x1,x′

2), with x′
2 > x2, so that we buy only from 

seller 2 at x(2) . But then by truthfulness it follows that at 
x′ = (x′

1, x
′
2) we cannot buy from either of the sellers. (If 

we bought from seller 1 at x′ , we would also buy from 
seller 1 at x(2) by truthfulness, but that contradicts our as-
sumption. Vice versa for seller 2.) But not buying at all at 
x′ is not a valid mechanism by definition. Fig. 2 (b) shows 
this case.

Thus, the optimal (valid) reverse auction can never buy 
from both bidders at once. �

An immediate consequence of this result is that the op-
timal mechanism design problem in this setting is simpler 
than in the auction setting: We are now only looking for a 
partition of the bid space into two regions A1 and A2 = Ac

1.
Surprisingly, for k ≥ 3 bidders the opposite holds: It is 

possible to construct instances in which it is optimal to 
buy all k copies of the item.

Theorem 2. For three or more bidders, the optimal reverse auc-
tion may buy from all sellers.

Proof. To show this, we will construct an instance. Our 
main gadget will be of the following form: Consider points 
p1 = (cL, cM, cH) and p2 = (cM, cL, cH) with high probabil-
ity weight, and a third point q = (cM, cM, cH) with very low 
probability weight, for some constants cL << cM << cH. 
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Fig. 3. The gadget we will use in the proof of Theorem 2. High proba-
bility weight on points p1 and p2 makes it optimal to buy from seller 3 
(in green) at point q. Buying from either of the other sellers at q would 
raise the purchase price at either p1 or p2, thus raising the expected cost. 
By monotonicity, the mechanism then must also buy from seller 3 at all 
points behind q in this view.

Fig. 4. Three gadgets make up the construction used in the proof of Theo-
rem 2. Notice that for bid vector x (in the centre at the intersection of the 
three qi -segments), the mechanism will buy from all three sellers, due to 
monotonicity and the allocation at the points qi .

We will want to make this so that the optimal mecha-
nism will want to buy at the point p1 cheaply from seller 
1 - and thus cannot buy at point q from seller 1, as by 
monotonicity that would also raise the purchase price at 
p1. Similarly for buyer 2 and points p2 and q. As a conse-
quence, it will want to buy at q from seller 3. This will 
be at a very high purchase price, but if the probability 
weight on q is small enough, this will still be optimal in 
expectation. Fig. 3 illustrates this construction. By mono-
tonicity it follows that if the mechanism buys from seller 
3 at q = (cM, cM, cH), it must also buy from seller 3 at all 
points (cM, cM, v3), v3 ≤ cH.

By creating three such gadgets in the right places and 
rotated appropriately, we can then make it optimal to 
buy from all three sellers at the intersection of these 
q-segments. Consider the construction in Fig. 4. In this 
we have one gadget consisting of p12 = (cH, cL, cM), p13 =
(cH, cM, cL) and q1 = (cH, cM, cM) with the auctioneer buy-
ing from bidder 1 in the q1-segment, similarly one gadget 
consisting of p21, p23 and q2 for bidder 2, and a third one 
v3 = 1 v1 = 1 v1 = 2 v1 = 3
v2 = 3 1 3 3
v2 = 2 3 3 3
v2 = 1 2 2 2

v3 = 2 v1 = 1 v1 = 2 v1 = 3
v2 = 3 1 2 3
v2 = 2 1 1,2,3 1
v2 = 1 2 2 2

v3 = 3 v1 = 1 v1 = 2 v1 = 3
v2 = 3 1 1 3
v2 = 2 1 3 2
v2 = 1 2 2 2

Fig. 5. The full allocation for the instance in Theorem 2. Each cell shows 
the bidder(s) the mechanism buys from at the given bid vector. High 
probability points are shown in bold face.

comprising p31, p32 and q3 for bidder 3. Again let there 
be very high probability weight on the pi j , and very small 
probability weight ε on the qi (and everywhere else). The 
qi are placed such that the qi -segments intersect at the 
point x = (cM, cM, cM). It is easy to check that the op-
timal mechanism will indeed buy from bidder i in each 
qi -segment, for ε small enough. It will thus buy from all 
three bidders at x.

To show this formally, wlog we take the prior support 
to be [3]3, and cL = 1, cM = 2, cH = 3. It is easy to see 
that the following arguments work for any other choice 
of these constants. Let there be probability weight 1−ε

6
on points p12 = (3, 1, 2), p13 = (3, 2, 1), p21 = (1, 3, 2), 
p23 = (2, 3, 1), p31 = (1, 2, 3), p32 = (2, 1, 3), and prob-
ability weight ε

21 on each of the remaining 21 points 
of the prior support. We will denote by q1 = (3, 2, 2), 
q2 = (2, 3, 2), q3 = (2, 2, 3) among these. Notice how for 
i = 1, 2, 3 each of these sets of two pi j and one qi forms 
one of the gadgets discussed at the start of this proof.

We will proceed as follows. First, we show that the 
optimal mechanism has the property that the auctioneer 
buys each of the points pi j for price 1 from seller j (and 
only seller j). There are two things to check here: In step 
1(a), we show that a valid allocation exists that has this 
property. In step 1(b), we show that any allocation with 
this property has lower expected cost than any allocation 
without this property. Second, in step 2, we deduce from 
this that the optimal mechanism buys from all three sell-
ers at point x = (2, 2, 2).

Step 1(a): There is a valid mechanism that buys from 
seller j (and only seller j) at each point pi j , for price 1: 
This is easy to see. We show one such mechanism in Fig. 5. 
Each cell lists the bidder(s) that the item is bought from 
for this given bid vector. The high probability bid vectors 
are shown in bold face.

Step 1(b): Any mechanism that allocates at the points 
pi j in this manner has lower expected cost than any mech-
anism that does not. We show this by giving first an up-
per bound on the expected cost of any mechanism with 
this property. This consists of an exact expression for the 
contribution to expected cost incurred at the pi j , plus an 
upper bound on the contribution at all the other points. 
Second, we give a lower bound of the expected cost of 
any mechanism which does not have this property. For this 
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it suffices to lower bound the expected cost incurred at 
the pi j .

So, assume a mechanism allocates at the pi j in the 
manner claimed. Then the expected cost can be (very 
crudely) bounded above by 6 ·1 ·1 · ( 1−ε

6 ) +21 ·3 ·3 · ( ε
21 ) =

1 + 8ε . The first term is the contribution from the 6 points 
pi j where we buy at price 1 from exactly 1 seller with 
probability 1−ε

6 each, the second term a bound from the 
21 remaining points, where we buy from at most from 3 
sellers, for at most a price of 3, with probability ( ε

21 ) each.
On the other hand, if a mechanism allocated at any of 

the pi j differently (while maintaining monotonicity), that 
would mean either raising the purchase price to at least 
2 at a pi j (either due to buying from the same bidder at 
a higher price, or buying from a different bidder at price 
≥ 2), or buying from more than one buyer at a pi j . Either 
way we would incur at least an extra ( 1−ε

6 ) expected cost 
at one of the pij . The resulting total expected cost of the 
mechanism would thus also be at least 7 · ( 1−ε

6 ).
It is easy to check that 1 + 8ε is less than 7( 1−ε

6 ) if ε <
1

55 . So, for any such ε the optimal mechanism will have 
the property that the auctioneer buys each of the points 
pi j for price 1 from seller j (and only seller j).

Step 2: Since the optimal mechanism buys from seller 
j for price 1 at each pi j , it follows that it buys from bidder 
i at each qi , as buying from either of the other bidders 
would contradict the low buying price at a pi j . There-
fore by monotonicity, it will buy from all three sellers at 
x = (2, 2, 2). For k bidders, this construction easily gener-
alises. Use k gadgets, each with k − 1 points pi j forcing 
the mechanism to buy point qi from the remaining bidder. 
This shows our claim. �
4. Discussion and future work

Our results on correlated reverse auctions for the first 
time (to our knowledge) show an asymmetry between auc-
tions and reverse auctions. For two bidders, a further struc-
tural analysis allows us to show a small reduction in com-
plexity compared to the auction. Our result for three or 
more bidders is surprising, as it shows a much higher di-
mensional space of possible outcomes - exponential (in the 
number of bidders) compared to linear in an auction. This 
suggests an exciting uncertainty regarding the complexity 
of the optimal reverse auction design problem. More gen-
erally, we take our results as evidence that the reverse auc-
tion case is interesting to consider as a separate problem 
from the standard auction model. We have shown that at 
least for the correlated prior case they behave structurally 
different. A main question for future work is to investigate 
differences in other settings.
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